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ABSTRACT

Read alignment is an ongoing challenge for the
analysis of data from sequencing technologies.
This article proposes an elegantly simple multi-
seed strategy, called seed-and-vote, for mapping
reads to a reference genome. The new strategy
chooses the mapped genomic location for the read
directly from the seeds. It uses a relatively large
number of short seeds (called subreads) extracted
from each read and allows all the seeds to vote on
the optimal location. When the read length is
<160 bp, overlapping subreads are used. More con-
ventional alignment algorithms are then used to fill
in detailed mismatch and indel information between
the subreads that make up the winning voting block.
The strategy is fast because the overall genomic
location has already been chosen before the
detailed alignment is done. It is sensitive because
no individual subread is required to map exactly,
nor are individual subreads constrained to map
close by other subreads. It is accurate because
the final location must be supported by several dif-
ferent subreads. The strategy extends easily to find
exon junctions, by locating reads that contain sets
of subreads mapping to different exons of the same
gene. It scales up efficiently for longer reads.

INTRODUCTION

Developments in next-generation (next-gen) sequencing
technologies that parallelize the sequencing process have
dramatically increased world-wide sequencing capacity in
the past few years. Individual projects, such as the 1000
Genomes project (1) or The Cancer Genome Atlas (http://
cancergenome.nih.gov, March 2013), can produce tens or
hundreds of terabytes of sequence. A single Illumina
HiSeq system now has the capacity to generate >4

billion bases of sequence per hour. Meanwhile the
typical length of an individual sequence read has increased
from �30 to 100 bp, and is likely to increase further.
Next-gen sequencing is revolutionalizing many areas of

biological research. It may be used to detect variation in
genomic DNA, to measure gene expression, to identify
RNA transcripts and for many other purposes. Read
mapping, the alignment of sequence reads to a reference
genome, is the first step for many of these analyses and is
often the most computationally intensive part of the
analysis.
All read aligners have to take algorithmic shortcuts

because the computational cost of exhaustively comparing
every read to every possible position in the genome is pro-
hibitively expensive. The first step is almost always to map
a shorter part of the read (a seed) to the genome.
Typically, only a small number of mismatches are
permitted, and indels are disallowed entirely. This is
partly for specificity, but also because too many
mismatches may cause later steps like backtracking to
fail. Most aligners then work out from the location that
the seed mapped to, trying to match the remainder of the
read to the genome surrounding the original location, a
process often called the extension step (2). Typically a
short seed will map to multiple locations in the genome,
so the seed must be extended at multiple locations before it
can be settled which of the original locations has the best
overall match to the complete read. At each location, the
extension step must contend with the possibility of
sequencing errors, polymorphisms or indel events. If the
read was generated from RNA, then each extension step
must moreover deal with the possibility that the read
might span two or more exons that might be well
separated in the genome. The extension steps are far
more expensive than mapping the original seed, especially
for longer reads. Much of the computational cost is
incurred because the final mapping location cannot be
decided until all the extension steps are largely complete.
If the original seed contains too many sequencing errors or
mutations relative to the reference genome, or spans an

*To whom correspondence should be addressed. Tel: +61 3 93452629; Fax: +61 3 93470852; Email: shi@wehi.edu.au

Published online 4 April 2013 Nucleic Acids Research, 2013, Vol. 41, No. 10 e108
doi:10.1093/nar/gkt214

� The Author(s) 2013. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://cancergenome.nih.gov
http://cancergenome.nih.gov


unexpected exon junction, then the read alignment may be
doomed from the start.
Popular aligners that extend from a seed in various

ways include Bowtie (3), Bowtie2 (4), BWA (5),
Novoalign (http://www.novocraft.com, 2013), Maq (6)
and MrsFast (7). The extension step usually involves
backtracking (3,5), Smith–Waterman dynamic
programming (4–6,8) or Needleman–Wunsch dynamic
programming (9) (Novoalign). A survey of read aligners
can be found in (10). In general, the running time of
dynamic programming increases quadratically with read
length (11,12). Many clever algorithms have been
proposed to make the extension step more efficient,
including bounded backtracking (5) and banded and bit-
vector versions of dynamic programming (13,14). Bowtie2
has abandoned backtracking in favour of an Single
Instruction Multiple Data-accelerated dynamic program-
ming procedure (4). Despite all efforts, seed extension
remains intrinsically expensive for longer reads.
A recent trend to avoid problems with the choice of seed

is to try multiple spaced seeds (8,9,13,15–18). This
multiplies the candidate locations, which must then be
prioritized by some form of filtering to improve specificity.
A recent technique to do this is q-gram filtering. This pro-
cedure extracts a number of q-grams (substrings or seeds
of length q) from a sliding window moved along the read
(13,19–21) or from the entire read (8,9,17). A measure of
local similarity or a count of matched q-grams is then used
to determine whether the candidate regions should be
included for further examination. Local similarity has
been measured efficiently using parallelograms (13).
In this article, we propose a new multi-seed strategy that

differs from previous algorithms by choosing the mapped
genomic location for the read directly from the seeds. The
strategy consists of a seed-and-vote step, which achieves
local alignment simultaneously in multiple parts of the
read, followed by an in-fill step to complete the alignment.
The new strategy uses a relatively large number of short
equi-spaced seeds from each read, which we call subreads.
Instead of trying to prioritize the seeds, the strategy allows
all the subreads to vote on the optimal location for the
read. The voting procedure has similarities with q-gram
counting, but is used instead to determine a unique
location. The new strategy differs from previous proced-
ures in a number of ways: the subreads are shorter and
more numerous than conventional seeds; they are mapped
without mismatches; and the local alignment is determined
directly by counting subreads without further intermediate
steps. The subread procedure then uses conventional al-
gorithms including dynamic programming to complete the
alignment, filling in the detailed mismatch and indel infor-
mation between the subreads that make up the winning
voting block. The alignment is extremely fast because the
overall genomic location has already been chosen before
the detailed alignment is done, and because the in-fill is
required for very short local regions only, with known
flanking locations already provided by the matched
subreads. The strategy has been implemented in two
software tools: Subread for general purpose alignment
and Subjunc for detecting exon–exon junctions from
RNA reads.

Seed-and-vote local alignment may at first impression
seem too naive, as it does not require any conventional
concept of sequence similarity like edit distance to be
specified explicitly. Instead, a suitable balance between
sensitivity and specificity is achieved implicitly by
choosing a considerable number of relatively short
subreads. In extensive testing, the strategy proves to be
not only fast but more than competitive with existing
aligners in terms of sensitivity and accuracy. The
strategy is sensitive because no individual subread is
required to map exactly, nor are individual subreads con-
strained to map close by other subreads. The strategy is
accurate because the final location must be supported by
several different subreads. Crucially, the strategy scales up
efficiently for longer reads.

Insertions and deletions are genomic variants that have
been linked to the onset and progression of a number of
diseases. For example, a 6 bp indel in the promoter region
of gene Casp8 was identified to be associated with suscep-
tibility to multiple cancers (22). A 14 bp indel in the gene
Ncx1 was found to modulate the age at onset in late-onset
Alzheimer’s disease (23). Indel detection is an important
part of read alignment when mapping genomic DNA, but
presents special problems for many aligners. The need to
detect indels makes dynamic programming and backtrack-
ing very time-consuming, and the presence of indels can
make similarity measures like Hamming distance mislead-
ing. Q-gram filtering methods are seldom designed for de-
tecting insertions and deletions. SWIFT, for example, can
detect insertions and deletions within the sliding windows,
but not in the entire region of the read (20). By contrast,
our Subread software finds indels rapidly anywhere in the
read, mainly leveraging the fact that indels can be re-
stricted to very small regions bounded by flanking local
alignments.

RNA-seq presents particular challenges for aligners
because RNA transcripts typically comprise multiple
exons that might be thousands of bases apart in genomic
location. Elucidating the splicing mechanism is important
for understanding various biological processes, which
might make use of different isoforms from the same
genes to exert their functions. Ordinary DNA mapping
techniques designed for contiguous reads cannot be
applied successfully to map sequences that span exon–
exon junctions. RNA-seq mapping has therefore
concentrated on the detection of exon–exon junctions in
the read. Junction detectors need to split the read into
smaller segments, typically non-overlapping segments of
about 25 bp (24–26). Each segment is then mapped separ-
ately to the reference genome, and an exon–exon junction
is detected when segments from the same read map to
different exons. Our subread strategy can be viewed as a
more flexible and higher resolution version of segmenta-
tion that uses shorter more numerous overlapping
segments. Subjunc is a specialized version of our subread
software that performs complete alignment of RNA-seq
reads including detection of exon–exon junctions.
Compared with segmentation, the use of overlapping
subreads allows shorter subsequences to be matched to
exons while taking full advantage of longer single-exon
subsequences when they exist. Junctions can be detected
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closer to the ends of the reads. At the same time, the seed-
and-vote strategy provides speed improvements both at
the full read level and within each single-exon
subsequence.

Not all analyses of RNA-seq data require detection of
splice junctions. A popular type of gene-level differential
expression analysis uses read counts that are summarized
at the gene level (27–30). For this type of analysis, the
seed-and-vote paradigm provides a special efficiency,
because each read can be anchored to a particular exon
in a particular gene, even before the exon–exon junctions
have been detected. This means that Subread can be used
to generate gene-level count summaries, without the need
to run Subjunc. This provides spectacular speed improve-
ments for this particular type of analysis over alternative
alignment pipelines.

This article presents results from an extensive suite of
test scenarios to compare Subread with other popular
aligners. We present results both from simulations and
from a range of calibration data sets, including the 1000
Genomes project, sequencing data with spike-in controls,
and benchmark RNA-seq data from the Sequencing
Quality Control (SEQC) project. The tests include indel
detection for genomic DNA mapping scenarios and exon-
junction detection for RNA-seq. Special attention is given
in our comparisons to accuracy, i.e. to incorrectly mapped
reads, as well as to the more commonly examined ques-
tions of sensitivity and speed.

MATERIALS AND METHODS

Data sets

We used a 1000 Genomes data set, a SEQC data set and
simulation data sets to compare alternative methods for
read mapping and exon–exon junction detection.
The 1000 Genomes data set includes 27.5 million pairs
of 100 bp reads, which were generated from an exome
sequencing of a Puerto Rico individual (SRR070481).
The sequencing was performed by Washington
University Genome Sequencing Center in October 2010,
using an Illumina Genome Analyzer II sequencer.

The SEQC project, which is the third stage of the well-
known MAQC project (31), is producing benchmark next-
gen sequencing data. It aims to use these data to evaluate
current analysis methods and to provide a guideline for
analysing the sequencing data. Four types of samples are
being sequenced in this project, including A, B, C and D.
Sample A is the Universal Human Reference RNA
(UHRR). Sample B is the Human Brain Reference RNA
(HBRR). Samples C and D are mixed from A and B at
mixing percentages of 75%A:25%B and 25%A:75%B, re-
spectively. We chose one library for each sample and
included them in this study. Each library has �6 million
pairs of 101 bp reads. This data set was generated by City
of Hope, USA, in August 2011, using an Illumina HiSeq
sequencer.

One hundred and one base pair simulation data were
generated from a modified human reference genome
GRCh37(hg19), in which 80 bp or longer repetitive se-
quences were removed so as to make each simulated

read have a unique known mapping location. SNPs and
indels were randomly introduced to the human genome
GRCh37, at rates of 0.0009 and 0.0001, respectively, to
simulate genomic variation. This setting is the same as that
used in the work of Li and Durbin (5). Real quality scores,
extracted from a 101 bp SEQC Sample A read data set,
were used for simulation reads. Sequencing errors were
generated according to the quality score each read base
has. The lower the quality score, the more likely a
sequencing error was introduced. So the distribution of
sequencing errors is similar to that of the real base
calling errors. This makes the simulation read data very
similar to the real read data. Supplemental Figure S1
shows the mean error rates at each base location in
SEQC reads and in simulation reads.
Two 101 bp simulation data sets were generated. One

contained indels and the other did not. Indels were not
introduced to the reference genome when generating the
data set containing no indels. Each data set included 10
million single-end reads. Two 202 bp simulation data sets
(one contained indels and the other did not) were
generated in the similar means, except that quality score
of each base in each SEQC read was duplicated before
being assigned to the longer reads.
In addition to the simulation data sets generated from

the filtered human genome, we generated a 101 bp simu-
lation data set from the unfiltered human genome, in
which repetitive regions were kept. This data set contained
indels in it. We also used Mason (32) and Art (33) to
generate two extra simulation data sets. The unfiltered
human genome was used for them as well. We generated
100 000 100-bp-long reads from using each read simulator.
For Mason, we used an SNP rate of 0.0009, an indel rate
of 0.0001 and the default sequencing error rate (0.004).
For Art, we provided it with a quality profile, which was
created from the SEQC data set used in this study, to
make it introduce sequencing errors using the real base
calling errors. The indel rate used was 0.001. For all
other parameters of Maons and Art, default values were
used. Versions of Mason and Art used are 0.1 and 1.5.0,
respectively.

ERCC spike-in control data

The Ambion(textregistered) External RNA Controls
Consortium (ERCC) spike-in control includes 92 spike-
in transcripts, which are spiked in difference concentra-
tions in each of the two mixes (Mix 1 and Mix 2)
(http://www.lifetechnologies.com, 2013). The transcripts
in these two mixes are present at defined Mix 1:Mix 2
molar concentration ratios, described by four subgroups
(log fold changes of 2, 0, �0.58 and �1, respectively).
Each group contains 23 transcripts spanning a 106-fold
concentration range, with approximately the same tran-
script size and GC content. The median length of the
spike-in transcript sequence is 994 bp.
The ERCC spike-in control sequencing data used in this

study were created as part of the SEQC study. Mix 1 and
Mix 2 were pooled with SEQC sample A (UHRR) and
sample B (HBRR), respectively, before library prepar-
ation was performed. Spike-in transcript sequences were
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combined with human genome so that a hybrid index can
be built by each aligner. Spike-in reads and human reads
were then mapped to the hybrid index.
To compute fold changes for each spike-in transcript,

read counts were normalized by total number of mapped
spike-in reads and by the transcript length (reads per 1 kb
transcript per 10 000 mapped spike-in reads). An offset
count of 0.5 was added to the raw read counts to avoid
taking the log of zero.

Exon–exon junctions derived from NCBI RefSeq
annotation

When comparing different methods for detecting exon–
exon junctions, we assessed their ability to discover junc-
tions that originate from annotated exons. We obtained
chromosomal coordinates of annotated exons from NCBI
RefSeq human gene annotation (Build 37.2). We call a
reported junction as a ‘known’ junction, if it connects
two annotated exons from the same gene, i.e. the 50

splicing point of the junction is located at the last base
position of the 50 exon and the 30 splicing point is located
one base before the first base of the 30 exon.

Mapping quality scores

Subread and Subjunc output a mapping quality score
(MQS) for each mapped read, defined by

MQS ¼ 100+
100

l

X
i2bm

ð1� piÞ �
X
i2bmm

ð1� piÞ

( )

where l is the read length, pi is the base-calling P value for
the ith base in the read, bm is the set of locations of
matched bases and bmm is the set of locations of mis-
matched bases.
Base-calling P values can be readily computed from the

base quality scores available in the FASTQ file (raw read
data file). High-quality bases have low base-calling
P values. Read bases that were found to be insertions
are treated as matched bases in the MQS calculation.
The MQS is a read-length normalized value, which is in
the range of 0–200. If a read can be best mapped to more
than one location, its MQS will be divided by the number
of such locations.

Building index for reference genome

To build an index, 16 bp sequences were extracted from
the reference genome in every three bases, i.e. there is a
2 bp gap between each pair of neighbouring 16 bp se-
quences. Correspondingly, each read has to be scanned
three times for the mapping, i.e. three sets of subreads
are extracted, which start from the first, second and
third base of the read, respectively.
We build a hash table for a reference genome to enable

fast access to the chromosomal locations of subreads
extracted from each read. The hash table includes all the
informative 16 bp sequences extracted from the reference
genome (keys) and also their chromosomal locations
(values). Each base in each 16 bp sequence is encoded by
2 bits. Therefore, each 16 bp sequence occupies 4 bytes of

space. For mouse or human genomes, their index sizes are
6.2 and 6.6GB, respectively. The actual peak memory
usage will be slightly higher than these, because sequences
of the entire genome are loaded into memory as well when
performing alignment. The index-building function
provides the option of breaking the index into multiple
parts so as to reduce the memory footprint (only one
part is present in the memory at any time).

Aligners and junction detectors under comparison

Versions of aligners included in this study are as follows:
Subread (1.3.1), Bowtie2 (2.0.0-Beta3), BWA (0.5.9), Maq
(0.7.1), MrsFast (2.3.0.2) and Novoalign (2.07.11). All
aligners were run using their default settings except
Novoalign and MrsFast, which were run with the
options -rRandom and -n 1, respectively, to report at
most one hit for each read so that they can be compared
with other aligners. Versions of junction detectors
included in this study are: Subjunc (1.3.1), TopHat
(1.3.0), TopHat 2 (2.0.0) and MapSplice (1.15.2). All the
programs were tested on a HP Blade supercomputer,
which includes 16 Xeon 2.93GHz CPU cores and 128
GB of memory.

Subread and Subjunc can be downloaded from http://
subread.sourceforge.net or http://www.bioconductor.org
(Rsubread package).

RESULTS

The seed-and-vote paradigm

We describe a new multi-seed alignment strategy that
chooses the mapped genomic location for the read
directly from the seeds (Figure 1). The new strategy uses
a number of overlapping seeds from each read, called
subreads. Instead of trying to pick the best seed, the
strategy allows all the seeds to vote on the optimal
location for the read. The algorithm then uses more con-
ventional alignment algorithms to fill in detailed mismatch
and indel information between the subreads that make up
the winning voting block. Figure 1B illustrates the
proposed seed-and-vote mapping approach with an artifi-
cial example.

Optimal subread length

A set of equally spaced overlapping substrings, the
subreads, are extracted from the read, and each is
mapped to the reference genome. No mismatches are
permitting when mapping each subread, so this step can
be accomplished with superb speed and efficiency via a
hash index of the genome. Instead of allowing
mismatches, we keep the subreads relatively short to
achieve a good balance between sensitivity and accuracy.
Tests show that a range of subread lengths, from 10–25 bp,
work well from this point of view (data not shown).
Subread uses subreads of length 16 because that is in the
optimal range for sensitivity and accuracy and because
sequences of this length will fit exactly into a machine
word on a 32-bit computer system or into half a word
on a 64-bit computer system. This uses computer
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memory in the most efficient way and reduces data access
time (Supplemental Methods, Supplemental Figure S2).

For the subread strategy to work effectively, it is neces-
sary that each subread has reasonable specificity, so
subreads corresponding to highly repetitive or overly
common sequences are removed from the subread set.
Examination of the human genome shows that 81% of
all possible 16 bp sequences occur 24 or fewer times in
the genome (Supplemental Methods, Supplemental

Figure S3). With this motivation, we define as uninforma-
tive any subread whose sequence occurs >24 times in the
reference genome. The informative subreads are therefore
those subreads that occur �24 times in the reference
genome. Simulations show that higher thresholds lead to
higher mapping sensitivity but lower accuracy (Table 5).
Our goal is to achieve a high mapping accuracy and a high
mapping speed; therefore, we decided to use a more
stringent threshold to filter out uninformative subreads.
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Figure 1. Seed-and-vote mapping paradigm. (A) Schematic of the proposed mapping paradigm. Subreads (or seeds) are short continuous sequences
extracted from each read. Substrings in green are uninformative subreads, and they are excluded from voting. Little red bars denote mismatched
bases. Mapping location of the read is determined by the largest consensus set. The thin solid arrows point to the mapping location of each subread
included in the largest consensus set. Mapping location of the read, as indicated by the black up-pointing triangle, is voted for by all the subreads in
the largest consensus set. The dashed arrows indicate other mapping locations for the subreads, and these locations were disregarded due to
insufficient number of votes. (B) Using an artificial example to illustrate the paradigm. Six subreads are extracted from the artificial read. Each
square bracket denotes an extracted subread, which contains five continuous bases, and the number embedded in the blue cycle indicates the subread
number. Base sequence of each subread is encoded into a string of 0’s and 1’s (each base is encoded into a 2-bit binary number). Encoded value for
each subread is used as its key in the hash table. The key’s value gives the chromosomal location/s in the genome to which the corresponding subread
is perfectly matched (no mismatches allowed). Four candidate mapping locations are found for this artificial read, which receive 2, 5, 1 and 2 votes
(number of consensus subreads), respectively. The location that receives the largest number of votes, in this case the location with five votes, is
selected as the final mapping location for this artificial read. (C) Indel detection performed under the seed-and-vote paradigm. (C1) shows the
mapping results of subreads when there are no indels found in the reads (assuming no mismatches exist in the read for simplicity). (C2) and (C3)
show respectively the schematic for detecting an insertion (Ins) and a deletion (Del) in the situation where insertion or deletion is found in the read
and flanking subreads are found at both sides of insertion or deletion. (C4) gives the schematic for detecting indels when they occur at the locations
close to the end of the reads where flanking subreads can be found at only one side. In (C2) and (C3), chromosomal locations pointed to by red
arrows are the true mapping locations of subreads 8, 9 and 10, respectively, and chromosomal locations pointed to by dotted black arrows indicate
the chromosomal locations to which they will be mapped if no indels exist before them. d is the indel length, equal to the difference between the
location pointed to by the red arrow and the location pointed to by the dotted black arrow from the same subread. Regions encompassed by the
dotted green lines are found to contain indels [(C2) and (C3)] or are candidate regions for searching indels (C4). Bases in these regions are not
covered by subreads that have made successful votes, and their mapping locations will be determined by aligning to the corresponding regions (within
the dotted green lines) in the reference genome. In (C4), a 4 bp window is moved along the uncovered bases to look for potential indels. When three
or more bases in the window are found to be mismatches, the indel detection process is triggered for the search of indels.
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A cut-off of 24 repeats was used for Subread when
comparing it with other aligners in this study unless other-
wise stated. Subread provides an option (‘-f’) in the index
building program so that users can adjust this threshold if
appropriate.
Any set of informative subreads that vote for the same

mapping location for the read is called a consensus set. In
general, a read will have more than one consensus set.
This is partly because of ambiguity, because a subread
can be mapped to more than one location, but also
because different regions of the read could genuinely ori-
ginate from disjoint regions of the reference sequence, for
example because an RNA read could span one or more
exon–exon junctions.
The largest consensus set for each read determines its

mapping location. When there is no unique largest con-
sensus set, because two or more consensus sets mapping to
different locations have the same number of votes, the one
covering more bases in the genome is chosen. If there is
still a tie, it is broken on the basis of either MQSs or by the
Hamming distance between the read and each candidate
region.

How many subreads and how many votes?

The remaining parameters that determine the mapping
algorithm are the number of subreads selected from each
read and the consensus threshold. The consensus thresh-
old is the minimum number of subreads (votes) required
for reporting a mapping location. An extensive simulation
study was undertaken to establish optimal values for these
parameters (Supplemental Materials). Numbers of
subreads ranging from 7 to 28, and consensus thresholds
ranging from 10 to 70% of the number of subreads, were
examined for the mapping of 10 million 101 bp reads. Not
surprisingly, sensitivity decreased and accuracy improved
with the consensus threshold increase for any fixed
subread number (Supplemental Figure S4). However,
setting the consensus threshold at �30% of the subread
number gave good performance with respect to both
accuracy and sensitivity across a wide range of subread
numbers and cut-offs for removing uninformative
subreads (Supplemental Figure S5). Smaller numbers of
subreads are preferred from a computational cost point
of view. By taking all the evaluation results into account,
we decided to select 10 subreads from each read and use a
consensus threshold of three for mapping.

Detecting indels around the subreads

Detecting deletions and insertions is an especially difficult
aspect of read mapping that typically incurs considerable
computational cost. Our seed-and-vote strategy, however,
facilitates an efficient and accurate approach to indel
detection with only very modest computation overhead.
First consider indels that are flanked by consensus
subreads. In that case, the genomic positions of the
flanking subreads determine the indel length and bound
the locations of the indel bases. Indels near the ends of the
reads will not have flanking subreads on both sides. In this
case, we move a window along the unmapped regions to
identify indels. The subread approach only needs to align

read bases not covered by the mapped subreads, a consid-
erable computational saving compared with full alignment
of the entire read.

Figure 1C illustrates how we identify indels and deter-
mine their lengths and locations. Figure 1(C1) shows the
mapping locations of subreads when there are no indels
found in a read. For simplicity, here every extracted
subread is mapped to a unique location. It can be seen
that the distances between mapping locations of subreads
in the reference genome are the same as their distances in
the read. We make use of this distance concordance to
infer indel lengths. When a read contains an insertion
[Figure 1(C2)], mapping locations of the subreads on the
right side of the insertion will be shifted to the left by a
distance d, which is equal to the length of insertion.
Similarly, when a read contains a deletion
[Figure 1(C3)], mapping locations of subreads on its
right side will be shifted to the right by a distance equal
to the length of deletion. Because there are no mismatches
allowed in the flanking subreads, the indels are called with
high confidence. The uncovered bases, which are not
covered by mapped subreads due to indel occurrences,
are then aligned to the genomic interval between the
mapped locations of the flanking subreads (encompassed
by the green dotted line) using a Smith–Waterman
dynamic programming procedure. Because the indel
length has been determined already by the flanking
subreads, the Smith–Waterman algorithm can be in-
structed to find an alignment of the correct indel length.

As it can be seen, the dynamic programming procedure
is only required for aligning uncovered bases, rather than
aligning the entire read sequence using this procedure as
carried out by other aligners such as Novoalign. The
running time of Subread increased by only 3% when
using this procedure to discovered indels in the 1000
Genomes data set included in this study. The dynamic
programming procedure also reported correct indel
lengths for 98% of the reads that were found to contain
indels in this data set.

However, indels might not have flanking subreads at
both their sides, especially when their locations are near
the ends of the reads [Figure 1(C4)]. In this case, a 4 bp
window is moved from the first (or last) mapped base to
the start (or end) of the read to identify indels. We require
at least three mismatches in the window to consider a po-
tential indel. Any potential indel that improves the simi-
larity between uncovered bases and the corresponding
reference region is reported.

Discovering exon–exon junctions between the subreads

A unique feature of RNA-seq is the ability to measure
distinct isoforms of a gene including alternative splicing
events. Here we use the seed-and-vote paradigm to
develop a novel approach for detecting exon–exon junc-
tions and producing complete mapping results from
RNA-seq reads.

Figure 2 shows a schematic of the approach. The entire
set of reads is scanned twice. In the first scan, a number of
subreads are extracted from each read, which are then
used to vote for the mapping locations of reads in the
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Figure 2. Schematic for detecting exon–exon junctions under seed-and-vote paradigm. A two-scan procedure is used to detect exon–exon junctions
and to determine the mapping of each read. Three artificial reads are used to illustrate this procedure (Read 1, Read 2 and Read 50). In the first scan,
a set of subreads are extracted from each read and mapped to the reference genome. The best two mapping locations from each read, which receives
the two largest numbers of votes, are selected for further consideration. If donor and receptor sites are found between these two locations and total
size (L1+L2) of the two mapped regions in the reference is equal to the size (L) of the read region that is spanned by the subreads that vote for the
best two mapping locations, the determined splicing points will be recorded in the putative exon–exon junction table. Anchor locations of each read
in the genome and in the read are also recorded, which gives the mapping location to which the read is best mapped and the location of the leftmost
base of the set of extracted subreads that vote for that location, respectively. Anchor locations will be used for retrieving putative splicing points and
for the validation performed by the second scan. The first scan is applied to all the reads, and two tables are produced on completion. These two
tables include chromosomal locations of putative splicing points found for each exon–exon junction and anchor information for each read, respect-
ively. The input to the second scan includes these two tables and also the read data. For each read, the second scan uses its anchor location to search
for the putative splicing points falling within the read from the junction table output from the first scan and then examines all mapping possibilities
(including mapping the read as an exonic read) to eventually determine how the read should be mapped. The similarity between the read sequence
and the mapped regions when it is mapped as a junction read has to be greater than that from being mapped as an exonic read (i.e.
NML+NMR > NME), if it is called a junction read. The cyan dashed line indicates the mapping location of the first base or the last base of the
read when it is assumed that the read does not contain junctions. Putative splicing points are removed from the final results if they are found to not
have any supporting reads after the second scan is completed. The final output from this two-scan procedure is a table of validated exon–exon
junctions with the number of supporting reads included, and also the complete mapping results for each read including CIGAR strings, which
describes how each base in each read is mapped.
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reference genome. Any locations which receive at least one
vote will be considered. We select the two most voted
mapping locations for each read and examine whether
there are any splicing sites existing between the two
selected locations. We require that a donor site (‘GT’)
and a receptor site (‘AG’) exist between the two locations
before considering them to have splicing points in
between. We also require that the length of region in the
reference genome that is spanned by the two sets of
subreads that voted for the two best locations, excluding
the region between the identified donor site and receptor
site, must be equal to the length of the region in the read
that is spanned by two same sets of subreads, when no
indels are allowed. This is illustrated in the mapping of
Read 1 in Figure 2 (L ¼ L1+L2). When indels are allowed,
the length difference will be equal to or less than the
specified maximal indel length. This first scan is very sen-
sitive in finding potential exon–exon junctions because any
mapping locations with as low as one vote are considered.
On the other hand, the requirements on the length of
mapped regions and on the donor/receptor sites ensure a
high accuracy to be achieved.
The second scan will perform full read alignment for

each read (including those reads mapped as exonic
reads, which have only one candidate mapping location),
using the output from the first scan. The second scan also
serves as a validation procedure that will examine all
mapping possibilities for each read and choose the best
possible ones for them. It also assigns reads to the exon–
exon junctions discovered from the first scan and removes
those junctions that failed to get any supporting reads.
Output from the first scan includes discovered putative

exon–exon junctions and anchor information for reads.
For each read, its anchor location in the genome is the
mapping location of leftmost base of the leftmost subread
in the set of subreads that voted for the best mapping
location of the read, and its anchor location in the read
is the location of the same base in the read. The anchor
region in each read is the region that is spanned by the set
of subreads that voted for the best mapping location, and
the region in the genome that is mapped to by the anchor
region in the read is its anchor region in the genome. The
anchor location saved for each read allows the second
scan to retrieve all putative exon–exon junction locations
falling within the read discovered from the first scan. The
second scan considers all possibilities of how each read
should be finally mapped, including locations where the
read is mapped as an exonic read (no junction break
points were found in the read), locations where the read
is mapped as a junction read that has one junction break
point or locations where the read is mapped as a junction
read that includes more than one junction break point.
We illustrate the proposed algorithm with example

involving a couple of reads, shown graphically in
Figure 2. Read 1 is found to contain a putative junction
break point located at the right side of the anchor, when
using its anchor location to search for splicing points from
the exon–exon junction table for this read discovered by
the first scan (Figure 2). To confirm if this is a true
junction, we examine whether including this junction in
the mapping result will improve its sequence similarity

to the reference genome. If this junction is included, its
position in Read 1 can be worked out from calculating the
distance between the anchor location of this read in the
genome (950 on chromosome 1) and location Splicing
Point 1 in the genome (1000 on chromosome 1), as this
distance is equal to the distance between this junction
location in the read and anchor location in the read
(when no indels exist). Each exon–exon junction has two
splicing points in the reference genome, Splicing Point 1
and Splicing Point 2. If there are indels, the junction
position in the read will be shifted to the right, denoting
insertion in the read, or left, denoting deletion in the read,
by the number of indel bases. NML denotes the number of
matched bases found in the region between the determined
junction location and anchor location in the read. We
further map the region, which is located between the
junction location and the 30 end of the read, to a
genomic region starting from location Splice Point 2.
Again, we allow indels in this mapping. The number of
matched bases found in this region is denoted by NMR.
Sum of NML and NMR gives the total number of matched
bases for the entire read region located at the right side of
the anchor, when this region is being considered to contain
a junction. We then compare this region directly to a con-
tinuous reference region starting from the anchor location
and ending at the location indicated by the cyan dash line,
and count the number of matched bases, denoted by
NME. This comparison checks the possibility that this
region can be mapped as an exonic region, i.e. no
junction exists in this region. Indels are allowed in this
comparison. If the sum of NML and NMR is greater
than NME, the discovered junction will then be confirmed
and this read will also be counted as one of the supporting
reads for this junction. Otherwise, this region will be
mapped as an exonic region. For the artificial read Read
1, this junction is confirmed and added to the table of
validated exon–exon junctions.

After determining the mapping of read region on the
right side of the anchor, the second scan moves on to
map the region at the left side of the anchor. There is no
putative junction break points found in this region; there-
fore, the mapping of this region is quite straightforward.
The voting subreads have already determined the mapping
locations of those bases in the anchor, and only indels
need to be figured out in those bases, which are located
outside of the anchor region if there is any. This is done by
testing if adding indels to every base could increase the
matched bases.

Read 50, however, is found to contain a putative
junction break point in the region on the left side of the
anchor, in addition to its confirmed junction break point
on the right side of the anchor. The second scan performs
a test, similar to what it has done for confirming the right
side junction, to validate the junction in this left region.

After both scans are completed, every read will be fully
aligned and a list of validated junction locations will be
generated. Those putative junction locations, which were
reported by the first scan but failed to get any supporting
reads in the second scan, were removed from the result
(e.g. the junction indicated by a red cross was removed).
The number of supporting reads is provided for each
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reported junction. Mapping results for each read are
reported, in addition to the chromosomal locations of dis-
covered exon–exon junctions. For each junction read, the
mapping location of each of its bases is recorded in a
CIGAR string (34).

Subread outputs the same mapping results for the
mapping of exonic reads as those given by Subjunc. For
the mapping of each junction read, the mapping region
given by Subread will overlap with one of the mapping
regions given by Subjunc, as they use the same set of
consensus subreads to determine the mapping location
(Subread) or anchor location (Subjunc). Therefore,
mapping locations of reads are essentially the same
between Subread and Subjunc, meaning that Subread
has the same mapping accuracy as Subjunc.

Subread is faster than previous aligners

First, we compared alternative aligners on a recent 1000
Genomes data set of 27.5 million pairs of 100 bp DNA
reads. Bowtie2, Maq and Subread all succeeded in
mapping almost all the reads to the human genome, and
they also had the highest percentages of normalized found
intervals given by the Rabema program (35). The metric
‘normalized found intervals’ developed in Rabema is
similar to the recall used in this study, except that it
down-weights those reads that are mapped to multiple
locations.

Subread was nearly four times as fast as the nearest
competitor, Bowtie2 (Table 1). There was a 30-fold differ-
ence in speed between Subread and the slowest aligners.
Subread remained more than twice as fast as any other
aligner even when tuned to use a small memory footprint.
MrsFast and Maq used considerable memory for this data
set, because their memory use is dependent on the number
of reads being mapped. The 1000 Genomes data set used
in this evaluation gives a typical size of read data used in
the field of genomic variation detection by using next-gen
sequencing technology. The speed of Subread makes it
suitable for production use.

The speed advantage of Subread increases as reads
become longer. Subread is seven times as fast as the next
fastest for mapping 202 bp reads (Supplemental Table S1).

With reads of this length, only Subread, Bowtie2 and
BWA were able to complete the task successfully.
Next, we compared the aligners on the SEQC RNA-seq

data. On this RNA data, Subread mapped by far the
highest percentage of reads of any of the aligners while
maintaining the same relative speed advantage as observed
for DNA reads (Table 2). Although junction detectors
such as TopHat or MapSplice can be used here to
achieve a mapping percentage comparable with Subread,
this requires >15 times the computing time (Table 7),
making this route less attractive for routine whole
genome expression profiling.

Subread is more accurate than previous aligners

Recovering spiked-in expression levels
We examined accuracy first by sequencing spiked-in RNA
transcripts, and comparing the read count coverage for
each transcript with the known expression level for that
transcript. The SEQC (MAQC III) project is now using
Ambion(textregistered] ERCC spike-in control (36) to
evaluate inter-laboratory concordance in using next-gen
sequencing technologies. The SEQC RNA-seq data set
included in this study contained reads sequenced from
these spike-in transcripts, in addition to the reads
sequenced from UHRR and HBRR samples. Each
spike-in transcript sequence contains a string of continu-
ous bases, and there are no exon–exon junctions in these
sequences. The set of ERCC spike-in transcripts span a
large concentration range, making them useful for
evaluating methods developed for processing next-gen
sequencing data.
A set of 92 spike-in transcripts were pooled with UHRR

and HBRR RNA to make Mix 1 and Mix 2 sample. The
spike-ins produce a set of transcripts 250–2000 nt in length
that mimic natural eukaryotic mRNAs. The two mixes
contain the same set of spike-in transcripts, but at differ-
ent known concentrations in the two mixes, so that the
nominal fold change between Mix 1 and Mix 2 for each
transcript is known. The true fold changes vary from 0.5
to 4. Each aligner was used to map reads from the Mix 1
and Mix 2 samples to a mixed reference genome consisting
of the human reference genome (GRCh37) plus the spike-
in transcript sequences. Each spike-in transcript was
treated as a separate chromosome. Reads mapped to

Table 1. Performance of aligners in mapping genomic DNA reads

from the 1000 Genomes project

Aligner Mapped
(%)

Rabema
intervals (%)

Time
(h)

Memory
(Gb)

Subread (default) 97.7 86.7 1.6 7.6
Subread (low memory) 97.7 86.7 2.9 4.3
Bowtie2 99.1 87.2 6.0 3.3
BWA 95.6 82.6 15.2 3.3
Maq 98.1 86.3 48.3 19.1
Novoalign 93.9 68.9 18.7 8.2
MrsFast 70.3 73.8 48.2 25.8

Columns give the percentage of reads that are successfully mapped, the
percentage of normalized found intervals given by the Rabema
program (in ‘all’ category, maximal error rate of 8%), the time taken
and the peak memory usage. Results are given for Subread with default
settings and when set to use less memory.

Table 2. Performance of aligners in mapping RNA-seq reads from

the SEQC project

Aligner Mapped
(%)

Time
(min)

Memory
(Gb)

Subread (default) 96.9 23 7.6
Subread (low memory) 96.9 40 4.3
Bowtie2 85.7 90 3.3
BWA 78.6 284 3.3
Maq 66.4 685 5.2
Novoalign 78.4 361 8.1
MrsFast 46.2 398 7.4

Columns give the percentage of reads that are successfully mapped, the
time taken and the peak memory usage. Results are given for Subread
with default settings and when set to use less memory.
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each spike-in transcript were counted and used to compute
a log2 fold change for that transcript between the two
samples.
Subread returned fold changes that were closer to the

true fold changes than any other aligner (Table 3).
Subread also mapped more reads than any other aligner
except Bowtie2, but Bowtie2 had the worst accuracy,
suggesting that its alignment is somewhat too aggressive.

Detecting indels
Next, we evaluated aligners according to their ability to
detect known indels. To contruct a genome with known
deletions, we extracted a long sequence including one
million bases from chromosome 1 of human reference
genome and introduced deletions (at a rate of 0.02%)
and SNPs (at a rate of 0.09%) to it. We then extracted
101 bp reads from locations in this sequence containing
deletions, and recorded the position and length of the

deletions in each read. Deletions could be located at any
base position of reads, except their first and last four
bases. Each read contained only one deletion event.
To assess the ability of aligners in detecting indels with
different lengths, we generated 16 data sets spanning every
possible deletion length from 1 to 16 bp. The first
such data set includes reads with 1 bp deletions, the
second includes reads with 2 bp deletions and so on.
Base quality scores in each read were taken from reads
in a 101 bp SEQC data set. Bases in each read were
mutated according to their quality scores to simulate
sequencing errors, i.e. the lower the quality score a base
has, the more likely it will be changed to a different
nucleotide.

Figure 3 shows the recall rate and accuracy of each
aligner in detecting deletions at each cumulative deletion
size. Maq and MrsFast do not support indel detection and
therefore excluded from this evaluation (Maq only
supports indel detection for paired-end reads). We added
BWA-SW (37) in this evaluation.

Subread was found to clearly outperform the other
aligners in both accuracy and recall. It is also the only
aligner that has achieved increasingly higher performance
in both accuracy and recall with the increase of deletion
size. The superior performance of Subread in detecting
indels should be due to the power of using perfectly
matched flanking subreads to discover indels. Novoalign
has the second best accuracy. However, it has a rapidly
decreasing recall rate with the increase of deletion length,
and its recall is worse than Bowtie2. Bowtie2 has the
second best recall; however, its accuracy is one of the
worst. BWA-SW has a higher accuracy but lower recall
than BWA. BWA-SW and BWA were found to have the
worst performance among all aligners in this evaluation.
Although only deletions were included in this evaluation,
similar results should be observed when comparing for the
detection of insertions.
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Figure 3. Performance of aligners in detecting deletions of different sizes. The horizontal axis gives the cumulative deletion sizes. For each size, the
data sets with equal or smaller deletion sizes were combined and used for calculating the recall and accuracy for that size for each aligner. Aligners
were run at their best possible settings for the detection of deletions with different sizes.

Table 3. Performance of aligners in mapping ERCC spike-in reads

from the SEQC project

Aligner Number of mapped
spike-in reads (%)

MSE of
log2FC

Mix 1 Mix 2

Subread 86 906 (0.64%) 133 589 (1.2%) 1.10
Bowtie2 87 983 (0.65%) 135 105 (1.2%) 1.34
BWA 85 835 (0.64%) 131 821 (1.2%) 1.28
Maq 81 772 (0.61%) 125 698 (1.1%) 1.33
Novoalign 84 556 (0.63%) 129 711 (1.2%) 1.32
MrsFast 70 294 (0.52%) 109 144 (1.0%) 1.15

Columns 2–3 give the number (and percentage) of reads that were
correctly mapped to spike-in transcripts when sequencing the Mix 1
and Mix 2 samples. Column 4 shows the mean squared error (MSE)
with which the log fold changes (log2FC) computed from the tran-
script-wise read counts estimate the known log fold changes between
the Mix 1 and Mix 2 samples.
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Correctly mapping simulated reads
Next, we examined the ability of aligners to map reads to
correct locations. We firstly used the two 101 bp simula-
tion data sets generated from the modified human genome
in which repetitive regions have been removed
(MATERIALS AND METHODS). One data set con-
tained indels and the other did not. Reads in each data
set had a unique known mapping location.

The non-indel data set enables us to perform a fair com-
parison for the aligners that do not support indel detec-
tion, including Maq and MrsFast. Aligners supporting
indel detection were configured to disable indel detection
if possible so that all aligners can be compared at equiva-
lent terms, when using this data set for comparison.
Table 4 shows that Subread has the highest accuracy in
all aligners. The mapping accuracy was measured as the
fraction of correctly mapped reads in all mapped reads.
The accuracy achieved by Novoalign and Maq is slightly
lower than that of Subread. Novoalign has a slightly
higher recall rate than Subread; however, Maq has a
much lower recall rate. The recall rate was calculated as
the fraction of correctly mapped reads in all reads.
Bowtie2 has the highest recall rate among all aligners;
however, its mapping accuracy is one of the worst.
BWA and MrsFast were found have both low recall rate
and low accuracy among all aligners.

We then used the data set including indels to compare
those aligners that support indel detection. Here, a cor-
rectly mapped read must have a correct CIGAR string, in
addition to having the correct mapping coordinate on the
reference genome as given by its leftmost base. The
CIGAR string describes the location and length of
indels in the read if there is any. Again, Subread was
found to achieve the highest mapping accuracy
(Table 4). The accuracy and recall rate of Novoalign
were found to be slightly lower than those of Subread.
Similar to its performance in mapping the data set that
does not contain indels, Bowtie2 had a high recall rate but

low accuracy. The accuracy and recall rate of BWA were
both found to be the worst for this data set.
We further compared running time and peak memory

used by these aligners. The running time and peak
memory used by Subread, Bowtie2, BWA and
Novoalign were measured on the data set including
indels, and other aligners were measured on the data set
that does not include indels. Subread is the only aligner
that allows the tuning of amount of memory used for read
mapping. Subread was found to have a mapping speed
4–39 times as fast as other aligners when using 7.6GB
of memory, and 2–21 times as fast when using 4.3GB of
memory (Table 4). Subread achieves this enormous speed
advantage mainly due to its efficient voting mechanism,
which does not require the expensive operation of extend-
ing a seed sequence to the entire read which is being
carried out by all other aligners.
Subread maintained improved accuracy over competi-

tor aligners when mapping longer 202 bp reads
(Supplemental Table S1).
We also performed simulations using the unfiltered

human genome, in which repetitive regions were not
removed, to complement the above simulation that used
the unique regions of the human genome. Simulation
reads were generated from three simulators including
Art, Mason and our own simulator (MATERIALS
AND METHODS). Reads that were called correctly
mapped must have a correct CIGAR string. In this simu-
lation, we also tried using different cut-offs for removing
uninformative subreads for Subread. As before, Subread
continues to achieve better mapping accuracy and much
higher mapping speed, with small cost to sensitivity
(Table 5). Bowtie2 was found to have the worst
accuracy in all the comparisons here, although it had a
relatively good recall.
It can also be seen that when a higher threshold was

used for removing uninformative subreads, Subread has a
lower accuracy but a higher recall. The decrease of
accuracy should be because more uninformative

Table 4. Performance of aligners in mapping simulation reads

generated from the filtered genome (repetitve regions were removed)

Aligner Without INDELs With INDELs Time
(min)

Memory
(Gb)

Rec (%) Acc (%) Rec (%) Acc (%)

Subread 95.96 99.72 95.58 99.31 16 (29) 7.6 (4.3)
Bowtie2 99.04 99.41 98.65 99.03 66 3.3
BWA 81.06 99.22 80.24 98.50 205 2.4
Maq 90.56 99.69 622 5.9
Novoalign 95.99 99.69 95.57 99.29 91 8.0
MrsFast 72.78 99.45 256 4.6

Two data sets were used. One data set contains indels and the other
does not. Column ‘Rec (%)’ gives the percentage of correctly mapped
reads in all simulation reads included in the data set, and column ‘Acc
(%)’ gives the percentage of correctly mapped reads in all mapped
reads. Maq and MrsFast do not support indel detection, and therefore
they do not have recall and accuracy values for the indel-containing
data set. Running time and peak memory usage of Subread, Bowtie2,
BWA and Novoalign were measured using the indel-containing data
set. Running time and peak memory usage of Subread when set to use
less memory are given in parentheses.

Table 5. Performance of aligners in mapping simulation reads

generated from the unfiltered human genome (repetitive regions were

kept)

Aligner Art Mason Our simulator Time
(min)

Rec
(%)

Acc
(%)

Rec
(%)

Acc
(%)

Rec
(%)

Acc
(%)

Subread 81.5 97.9 88.8 96.1 88.5 98.0 17
Subread -f 100 84.4 97.7 91.5 96.0 91.3 97.9 19
Subread -f 200 85.5 97.6 92.5 95.9 92.4 97.8 21
Subread -f 300 86.1 97.5 93.1 95.8 92.9 97.7 22
Bowtie2 87.6 95.2 95.2 95.3 95.7 96.0 83
BWA 87.1 97.2 95.5 95.7 78.6 96.4 497
Novoalign 89.8 97.3 93.5 97.1 140

One hundred thousand 100 bp reads were each generated from Art and
Mason simulators, and 10 million 101 bp reads were generated from
our simulator. ‘-f’ option of Subread specifies the threshold for
removing uninformative subread. For example, ‘-f 100’ means those
subreads that occur 100 or more times in the reference genome were
removed. Running time was measured using our simulation data.
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subreads remained when using a higher threshold, and
these uninformative subreads introduced more ambiguity
to the mapping. We prefer a low threshold (20–100) in
favour of mapping accuracy, although users can tune it
to achieve the balance between accuracy and recall they
desire. More importantly, the speed advantage of Subread
is almost unaffected by the choice of threshold values.
Next, we examined how well the MQS can be used to

measure the confidence of read alignment, using simula-
tion data. MQS has been found useful in downstream
analyses, for example they have been used by genotypers
to improve the performance of variant calling etc. (38).
Figure 4a and c show that for each aligner, as expected,
reads mapped with high MQS contained fewer incorrect
alignments. This supports the use of MQS as a means to
find high-confidence read alignments. Subread reports
more correct alignments (higher recall) than Bowtie2 for
the reads with high to medium MQS, and fewer incorrect
alignments for the reads with medium to low MQS. Note

that multi-mapping reads were assigned low MQS by
every aligner. Novoalign seems to have a lower recall
than Subread for the reads with high MQS, but a
slightly better recall for the reads with low to medium
MQS. Note that the overwhelming majority of mapped
reads were given high MQS by every aligner. BWA has
the best recall in Mason data set, but the worst recall in
our simulation data set.

When assessing the accuracy of alternative aligners
relative to each MQS, we use error fraction instead of
absolute number of incorrect alignments, to take into
account of the fact that different aligners reported differ-
ent total number of incorrect alignments. The error
fraction relative to an MQS s is calculated as the
number of those incorrectly mapped reads, which had
MQS equal to or higher than s, divided by the total
number of incorrectly mapped reads reported by the
aligner. The mapping accuracy relative to s is then
calculated as the number of correctly mapped reads with
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Figure 4. Recall and accuracy of aligners with respect to MQSs. (a) and (c) give the cumulative number of correctly mapped reads and incorrectly
mapped reads from high to low mapping quality. (b) and (d) show the cumulative accuracy and error fractions from high to low mapping quality.
(a) and (b) use the indel data set included in Table 4, and (c) and (d) use the Mason data set included in Table 5. Each point in each plot corresponds
to an MQS given by an aligner. Subread was run with default setting in (a) and (b) and with -f 100 in (c) and (d).
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MQS equal to or higher than s divided by the total
number of reads that had their MQS equal to or higher
than s. Figure 4b and d show that Subread outperforms all
other aligners in mapping accuracy at each MQS value.
Taken together, Subread was found to have comparable
recall but higher accuracy across the entire MQS range,
compared with other aligners.

Subjunc outperforms other junction detectors

The proposed seed-and-vote mapping paradigm has been
demonstrated to be more accurate and efficient in read
mapping. Here, we show that it is also useful in detecting
exon–exon junctions. We now compare Subjunc, our new
junction detector developed under the seed-and-vote
paradigm, with other methods including MapSplice,
TopHat and TopHat 2, using both simulation data and
real data (SEQC data).

We randomly selected �600 genes from human genome
and generated junction reads and exonic reads from them.
Indels and sequencing errors were introduced to the read
data in the same way as that used for generating simula-
tion data for comparing aligners. It is known that distri-
bution of gene expression levels is subject to exponential
distribution. We therefore assign to genes the expression
levels taken from an exponential distribution to make the
simulation data more similar to real RNA-seq data. This
also enables us to examine the performance of each
junction detection method in detecting exon–exon junc-
tions for both highly expressed genes and lowly expressed
genes. We quantify expression levels of genes using
number of reads per kilobases total exon model to take
into account gene length differences.

We generated three simulation data sets with different
sequencing coverages including 30 times (30�), 70 times
(70�) and 100 times (100�). Length of generated reads is
101 bp. These data sets roughly correspond to RNA-seq
data sets containing 18 million, 42 million and 60 million
reads, respectively (size of the transcriptome is estimated
to be 2% of genome size). Thus, they represent typical
sizes of sequencing data sets currently being generated.

Table 6 shows the results of comparing junction de-
tectors using these three data sets. It can be seen that
Subjunc achieves the highest accuracy in exon–exon
junction detection among all detectors. MapSplice has a
higher recall rate than Subjunc, but its accuracy is clearly
lower than Subjunc. TopHat 2 has a slightly better per-
formance than TopHat, but both of them were found to
have the worst accuracy, and TopHat was found to have
the worst recall rate.

It is important to compare junction detectors for their
performance in mapping reads, especially junction reads,
in addition to comparing them for calling exon–exon junc-
tions. This, however, has been overlooked in the literature.
The precise mapping of RNA-seq reads (especially
junction reads) is crucial for some downstream analyses,
such as detection of functional variations (indels, SNPs,
etc), allele-specific gene expression analysis and so on. A
serious problem with variant calling is known to be the
high false-positive rate. Here, we also compared the four

junction detectors for their performance in mapping the
reads.
Subjunc was found to outperform other detectors in

read mapping by a clear margin, especially in the
mapping of junction reads, in which it achieves both
best accuracy and best recall rate (Table 6). The superior
read mapping accuracy achieved by Subjunc gives it a lot
more power in calling exon–exon junctions. Moreover,
Subjunc is substantially faster in read mapping and
junction calling. More comparison results for speed and
memory usage can be seen from the comparison using the
SEQC data set.
We used the SEQC RNA-seq data to further compare

junction detectors. Table 7 shows the comparison results.
We compared locations of exon–exon junctions in the
genome reported by each method with the chromosomal
regions of annotated human exons obtained from NCBI
RefSeq annotation (build 37.2), to examine the difference
between alternative methods in detecting exon–exon junc-
tions originated from the splicing of known exons.
Subjunc was found to have the highest percentage of
‘known’ junctions in all its reported junctions for every
sample type (column ‘% known junction’), although its
absolute numbers of discovered junctions are less than
MapSplice and TopHat. This suggests that Subjunc has
a higher accuracy in calling junctions than other methods,
which is concordant with the simulation results.
MapSplice now has the lowest percentage of ‘known’ junc-
tions, although it calls more junctions than any other
methods, suggesting that its accuracy is the worst among

Table 6. Performance of exon–exon junction detectors in junction

detection and read mapping from using simulation data

Coverage Method Junctions Junction reads All reads Time
(min)

Rec
(%)

Acc
(%)

Rec
(%)

Acc
(%)

Rec
(%)

Acc
(%)

30� Subjunc 92.4 98.3 90.5 98.0 93.2 96.1 2
MapSplice 93.1 97.3 86.3 95.4 95.8 88.9 15
TopHat 92.0 92.3 86.7 91.9 95.7 92.0 16
TopHat 2 92.4 93.4 87.6 93.5 96.4 89.0 15

70� Subjunc 93.2 98.0 90.7 98.0 93.3 96.1 3
MapSplice 94.0 97.0 86.3 95.4 95.8 88.8 17
TopHat 93.0 91.7 87.2 91.9 95.9 92.0 26
TopHat 2 93.5 93.0 88.1 93.4 96.6 88.9 24

100� Subjunc 93.3 98.0 90.8 98.0 93.3 96.2 5
MapSplice 94.3 96.9 86.3 95.5 95.9 89.0 18
TopHat 93.0 91.0 87.2 91.9 95.9 92.0 32
TopHat 2 93.7 93.0 88.1 93.6 96.6 89.0 30

Three simulation data sets were used, which have different sequencing
coverages (30�, 70� and 100�). Column ‘Junction’ gives the recall rate
and accuracy for the detection of exon–exon junctions by each method.
Recall rate is the percentage of correctly reported junctions in all junc-
tions generated in the simulation data, and accuracy is the percentage
of correctly reported junctions in all reported junctions. Column
‘Junction reads’ (or ‘All reads’) gives the recall rate and accuracy of
mapping of junction reads (or any reads). Recall rate is the percentage
of correctly reported junction reads (or any reads) in all generated
junction reads (or all reads) in the simulation data, and accuracy is
the percentage of correctly mapped junction reads (or any reads) in all
reported junction reads (or any reads). Results are given for Subjunc
with default settings.
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all the methods. TopHat 2 called less junction than
TopHat, but its percentage of ‘known’ junctions is
higher than TopHat. Compared with Subjunc, TopHat 2
had a comparable number of reported junctions, but its
percentage of ‘known’ junctions is lower. It is worth
noting that overall most of the reported junctions by
each method (�80% or more) were found to originate
from the well-annotated RefSeq exons. Also, every
method found more exon–exon junction in samples C
and D than in A and B, which is expected because
samples C and D are the mixture of samples A and B.
We then compared these junction detectors by

examining the percentage of reported junction reads that
support their reported ‘known’ junctions. Subjunc was
found to have the highest percentage of supporting
junction reads in each sample type (column ‘Supporting
junction reads (%)’), indicating higher accuracy of
Subjunc for mapping junction reads. TopHat and
TopHat 2 were found to have the lowest percentages of
supporting junction reads. This comparison result is con-
sistent with the accuracy comparison results for junction
reads from simulation.
Consistent with the speed advantage of Subread shown

in the read mapping comparisons, Subjunc was found to
achieve a large speed advantage as well. Subjunc was
found to be four to seven times as fast as other methods
when using 8.4 GB of memory, and three to five times as
fast when using 4.7 GB of memory. This greatly reduces
the computational burden on discovering genome-wide
splicing events.
These results show improved speed and accuracy per-

formance for Subjunc in exon–exon junction detection
over existing methods.

DISCUSSION

Next-generation sequencing technologies entered main-
stream genomic research only a few years ago, and the
best ways to solve mapping and alignment problems are
still being developed. Sequencing technologies continue to
evolve at an astonishing rate, and read alignment is certain
to be a significant bottleneck in the analysis of genomic
data in the future at all levels of medical and biological
research. Current read alignment tools are being
challenged by increased data volumes and show

deteriorating performance with longer reads. In this
study, we propose a new multi-seed read alignment
paradigm, called seed-and-vote, that abandons the com-
putationally heavy extend operation of existing aligners in
favour of a voting strategy to quickly and accurately
locate the locations of reads in the reference genome.

The seed-and-vote paradigm has been found to be
effective not only for quickly identifying mapping loca-
tions but also for detecting indels and for detecting
exon–exon junctions for RNA-seq data. Using the
subreads flanking the indel regions to locate indels and
to determine their sizes enables highly accurate detection
of indels. The overhead computational cost for indel de-
tection is small, because the indel detection is only
required for those regions that are not covered by the
subreads that have made successful votes. To detect
exon junctions, the algorithm uses the best two mapping
locations voted by subreads extracted from junction reads
to generate a set of candidate exon–exon junctions, and
then performs rigorous validation for them to achieve a
high detection accuracy.

We used a variety of data sets to demonstrate the per-
formance of this paradigm against existing aligners. In
particular, we used ERCC spike-in controls for the evalu-
ation. Spike-in data sets have proved effective for
evaluating methods developed for the analysis of micro-
array data (31,39–43). To the best of our knowledge, our
study is the first to use spike-in controls to evaluate the
performance of read aligners for mapping next-gen
sequencing data. The unbiased design of ERCC spike-in
transcripts and their known concentration and fold
changes make them ideal for assessing the accuracy of
read aligners. Our Subread aligner was found to clearly
outperform other aligners in this comparison.
Furthermore, we used SEQC RNA-seq data, 1000
Genomes exome sequencing data and simulation data to
demonstrate the performance of Subread and Subjunc.
Consistently across all evaluation data sets, the seed-
and-vote paradigm showed higher accuracy and much
higher mapping speed than the seed-and-extend
methods, with little cost to recall. In particular, the
superior performance of Subread in indel detection will
bring a lot of benefit to the downstream analyses such as
genomic variation detection etc. The similar indel detec-
tion approach was implemented in Subjunc as well,

Table 7. Performance of exon–exon junction detectors in junction detection and read mapping from using SEQC RNA-seq data

Method Number of junctions (’000) Known junctions (%) Supporting junction reads (%) Time (h) Memory
(Gb)

A B C D A B C D A B C D

Subjunc 152 142 155 157 84.4 86.6 85.6 85.8 95.8 95.1 95.7 95.3 1.4 (1.9) 8.4 (4.7)
MapSplice 171 157 173 175 78.3 81.4 80.1 80.2 94.4 93.5 94.2 93.8 5.6 4.3
TopHat 156 145 159 161 82.5 84.9 83.8 84.0 93.8 93.5 93.8 93.6 9.2 2.9
TopHat 2 152 141 155 157 83.8 85.9 85.0 85.2 94.1 93.5 93.9 93.7 9.9 3.5

Columns give the number of reported exon–exon junctions, percentage of reported junctions that span known exons, percentage of reported junction
reads that support those known junctions, for each of the four samples included in the SEQC project (A, B, C and D). Sample A is Universal Human
Reference RNA made up from 10 cancer cell lines and sample B is Human Brain Reference RNA. C and D are the mixtures of A and B.
Chromosomal coordinates of annotated exons from NCBI RefSeq mouse annotation build 37.2 are used to determine whether or not a junction
spans known exons. Running time and peak memory usage of Subjunc when set to use less memory are given in parenthesis.
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making it a valuable tool for detecting genomic variation
in functional genomic regions (eg. exons).

Subread and Subjunc allow the tuning of memory used
in read mapping. This gives them great flexibility in
running on computers with different configurations.
Subread and Subjunc achieve their top mapping speed
when the entire hash table index is loaded into memory
in one go, which takes 7.6 and 8.4 GB of memory, respect-
ively, when mapping reads to human or mouse
genome. The amount of memory used by Subread is
comparable with or better than those of Novoalign,
Maq and MrsFast, but is higher than Bowtie2 and
BWA. Given that the contemporary computers are all
equipped with large memories, for example the HP
Blade supercomputers include hundreds of gigabytes of
memory and laptops now can easily have 8 GB of
memory, the memory use is not of concern compared
with the mapping speed, which is increasingly becoming
a bottleneck for the read mapping. Moreover, Subread
and Subjunc still have a significant speed advantage
when using memory comparable with Bowtie2 and
BWA, and with MapSplice, TopHat and TopHat 2,
respectively.

The main scoring scheme used by our seed-and-vote
paradigm is the vote number. The mapping location that
receives the highest number of votes is chosen for the read.
It is guaranteed that the best mapping location is found
when the maximum possible number of votes is achieved.
It would, however, be interesting to measure how this
scheme is correlated to other scoring schemes such as
edit distance etc. We used the simulation data to
measure this. As expected, voting number is inversely
correlated to edit distance, i.e. large voting number cor-
respond to small edit distance and vice versa
(Supplemental Figure S6).

A crucial advantage of the Subread seed-and-vote
strategy is that it scales up to map longer reads with neg-
ligible increase in computational time. Reads of > 100 bp
are already available, and much longer reads (1000 bp say)
may be not far away. We believe that seed-and-vote will
continue to yield good mapping results using 10 extracted
subreads, even for longer reads, because 160 bases should
be more than sufficient to determine the correct location
for each read. This implies that local alignment can be
achieved for a very long read virtually as quickly as for
a shorter read. The time taken for the in-fill step will
increase, but not enough to materially affect the overall
time taken. By contrast, the running times of other
existing aligners increase rapidly with read length.
Subread is already faster than other aligners for 50–
100 bp, and this advantage should become more
pronounced as read lengths increase. Simulations in this
article confirm that Subread maintains an accuracy advan-
tage as well as being faster for 202 bp. More comprehen-
sive evaluations should be performed as long read
benchmark data sets become available.

The success of the proposed paradigm in read mapping
and its potentially high scalability make it become a
promising new tool for the general-purpose sequence
search, i.e. finding sequences from a collection of se-
quences (often stored in a database) that have a high

overall similarity to or share common subsequences with
the query sequences. The query sequences could be tens or
thousands of bases long in the general biological se-
quence search. Blast (Basic Local Alignment Search
Tool) is one of the most widely used algorithms for this
kind of sequence search (44). It also makes use of the
seed-and-extend paradigm, which means it has the limita-
tions of this paradigm shown in this study, especially the
long running time. Our proposed seed-and-vote paradigm
can be readily extended to search for a sequence of thou-
sands of bases long from a large sequence database, by
extracting more subreads from the query sequence. We
speculate that using 30% of total number of extracted
subreads as the consensus threshold for calling hit se-
quences, which is the consensus threshold used in this
study for read mapping, may still give a reasonably
good accuracy and recall rate, not to mention its super
fast searching speed. However, further studies will be
needed to investigate how to use this paradigm to
perform the sequence search in the most efficient and
accurate way.
Some of the most commonly used statistical analyses of

RNA-seq or ChIP-seq data do not actually require
detailed alignment information, but are instead based
purely on tables of read counts for each gene, or other
pre-determined genomic feature, in each biological
sample (30,45–48). In our own biological research, we fre-
quently conduct differential expression analyses using
total read counts mapped to the exome of each gene, or
differential marking analyses of epigenetic modification
using total read counts summarized by gene promoter
regions or by gene bodies (49). This type of analysis
focuses on the total expression level or total read
coverage of each gene. Subread is particularly efficient
for this type of analysis, because it can identify the gene
or feature to which a read maps directly from the seed-
and-vote step. When mapping RNA-seq reads, Subread
has the capacity to use part of the read sequence to vote
for the mapping location for the entire read, and this
capacity enables Subread to call mapping locations for
reads spanning exon–exon junctions using the longest
matched region in the read. For this genewise counts of
RNA-seq reads, Subread yields equal or better results
than other aligners >15 times as quickly, turning weeks
of computing time for large problems into an overnight
run. We have created a Bioconductor package Rsubread
to give access to Subread capabilities from the R
command line, making a pipeline from FASTQ files to
read count tables and statistical analyses using packages
such as edgeR (50), baySeq (51) or diffBind (www.
bioconductor.org, 2013) particularly convenient.
Rsubread includes functions to summarize counts at the
gene or exon level given annotation for the reference gene.
The latest NCBI RefSeq annotation for the human and
mouse genomes are included in the package by default,
and annotation for other genomes can be uploaded by
the user.
This study presents a new paradigm for aligning next-

gen sequencing data that opens new directions for read
mapping algorithms.
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